Data FabricUnified platform for comprehensive data management

Modak’s Data Fabric is an architecture and set of data services that provide consistent capabilities across a choice of endpoints spanning on-premises and multiple cloud environments. Data Fabric simplifies and integrates data management across the cloud and on-premises to accelerate digital transformation.

A single platform that stitches data together and enables data management and integration can handle these challenges. Data Fabric provides a unified data platform that stretches across locations, including on-premise, cloud or edge, data types, and access methods. It is the fabric that provides an ensemble of tools and technologies surrounding disparate data silos to ensure that data is treated consistently.

  • Scales with growing data volumes and access methods
  • Provides common ways for users to access data processing tools
  • Enables data integration across data nodes
  • Fully supports automation needed for DataOps
  • Moves computation to the data
  • Manages data across all environments for batch and real-time needs
  • Supports complete API life cycle

Distributed Location

Workflows are orchestrated right from data ingestion and preparation to deployment and consumption through the execution of services for data capture, storage, integration, governance, provision, and application. The fabric provides a single control platform to execute a sequence of services built with pre-packaged diverse technologies & distributed across multiple execution environments. It also automates the coordination of distributed multi-services workflows.

Uniform Governance Model

The fabric ensures data consistency locally and provides a simple consistency model to implement across data locations. It integrates multiple data types across discrete data stores. The data is secured at the lowest granularity within the fabric rather than just as a function of access methods.

Distributed Metadata

Data fabric provides an extensive collection of metadata to discover, access, search, and integrate data silos. It allows metadata to be distributed across all data nodes to avoid any bottlenecks. It is also useful in minimizing cloud lock-ins.